Affine matrix rank minimization problem via non-convex fraction function penalty
نویسندگان
چکیده
منابع مشابه
Non-Convex Rank Minimization via an Empirical Bayesian Approach
In many applications that require matrix solutions of minimal rank, the underlying cost function is non-convex leading to an intractable, NP-hard optimization problem. Consequently, the convex nuclear norm is frequently used as a surrogate penalty term for matrix rank. The problem is that in many practical scenarios there is no longer any guarantee that we can correctly estimate generative low-...
متن کاملDiscovering Structure via Matrix Rank Minimization
16. SECURITY CLASSIFICATION OF: 19b. TELEPHONE NUMBER (Include area code) The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this bur...
متن کاملDC algorithm for solving the transformed affine matrix rank minimization
Abstract Affine matrix rank minimization problem aims to find a low-rank or approximately low-rank matrix that satisfies a given linear system. It is well known that this problem is combinatorial and NP-hard in general. Therefore, it is important to choose the suitable substitution for this matrix rank minimization problem. In this paper, a continuous promoting low rank non-convex fraction func...
متن کاملPenalty Decomposition Methods for Rank Minimization
In this paper we consider general rank minimization problems with rank appearing in either objective function or constraint. We first establish that a class of special rank minimization problems has closed-form solutions. Using this result, we then propose penalty decomposition methods for general rank minimization problems in which each subproblem is solved by a block coordinate descend method...
متن کاملHigh Dimensional Low Rank and Sparse Covariance Matrix Estimation via Convex Minimization
This paper introduces a general framework of covariance structures that can be verified in many popular statistical models, such as factor and random effect models. The new structure is a summation of low rank and sparse matrices. We propose a LOw Rank and sparsE Covariance estimator (LOREC) to exploit this general structure in the high-dimensional setting. Analysis of this estimator shows that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2018
ISSN: 0377-0427
DOI: 10.1016/j.cam.2017.12.048